
Heidelberg University
Faculty for Mathematics and Computer Science

Bachelor Thesis

Algorithmic Implementation of the Solution

to the Word Problem in Right-Angled Artin

Groups

Submission Date: 12 March 2021

Supervisor:

JProf. Dr. Maria Beatrice Pozzetti

Submitted by:

Jannis Leo Heising
jannis.heising@web.de

Preface

The goal of this thesis is to write a program which generates Cayley graphs
of right-angled Artin groups. For this, the word problem must be solved.
The particular method which we will use, namely pilings, was invented by
J. Crisp, E. Godelle, and B. Wiest [1], however, I will first present my own
variation of it which is more theoretical but, in my opinion, more intuitive in
its functionality. It requires a statement about directed graphs for which I
was unable to find a source, thus the proofs in Section 1.4 are my own.
The generated Cayley graphs were originally meant to be used in a machine
learning project by F. López, B. Pozzetti, S. Trettel, and A. Wienhard. Since
right-angled Artin groups naturally have both free abelian and free subgroups,
their Cayley graphs exhibit both flat and hyperbolic features, which makes
them quite similar to real-world datasets and thus useful for the testing of
graph embedding techniques.
Chapters 2 and 3 were heavily influenced by W. Bell and M. Clay’s chapter
on right-angled Artin groups in [2]. All illustrations are my own.

i

Contents

Preface i

1 Preliminaries 1
1.1 Group Presentations . 1
1.2 Graphs . 2
1.3 Cayley Graphs . 4
1.4 Directed Graphs . 5

2 Right-Angled Artin Groups 10
2.1 Definition . 10
2.2 Properties . 10

3 The Word Problem in RAAGs 12
3.1 What is the Word Problem? 12
3.2 Normal Forms . 12
3.3 Normal Forms in RAAGs . 14
3.4 Pilings . 18
3.5 Side Note: Properties of Pilings 20

4 Implementation in Java 23
4.1 Overview . 23
4.2 Vertices, Edges, and Graphs 24
4.3 Letters, Words, and Pilings 25
4.4 The Algorithm class . 27
4.5 Visuals . 29

A Source Code 32
A.1 Global Variables . 32
A.2 The setup Method . 33
A.3 The draw Method . 36
A.4 Event Methods . 38

ii

CONTENTS iii

A.5 Additional Methods . 40
A.6 The Word Class . 41
A.7 The Piling Class . 43
A.8 The Vertex Class . 44
A.9 The Edge Class . 44
A.10 The Graph Class . 45
A.11 The Algorithm Class . 48
A.12 The Slider Class . 50

Chapter 1

Preliminaries

1.1 Group Presentations

Group presentations are a versatile way of defining groups by their desired
properties. As an introduction, observe that every group is isomorphic to a
quotient of a free group1 in the following way: For a fixed group G , define
a homomorphism ϕ : F (G) → G , g 7→ g that maps each element of the
generating set of the free group F (G), which is the set of elements in G , to
itself in G .2 This is clearly surjective and thus

F (G)/ker(ϕ)
∼= G .

In particular, this means that we can obtain G from F (G) by declaring when
the product of elements in G is the neutral element (in other words when
the respective word is in ker(ϕ)). The key insight now is that we can usually
pick a much smaller generating set for the free group. It’s time for some
definitions.

Notation. For a set S , we call S−1 = {s−1|s ∈ S} the set of formal inverses
of S , LS = (S ∪ S−1) the set of letters over S , and L∗S the set of words with
letters in LS .

Definition 1.1. Let S be an arbitrary set and R ⊂ L∗S .

� We define 〈〈R〉〉 to be the smallest normal subgroup in F (S) that
contains R.

� We call 〈S |R〉 := F (S)/〈〈R〉〉 a group presentation of G ∼= 〈S |R〉. S is the
set of generators and R is the set of relations in 〈S |R〉.

1For a definition of free groups see [3, Sect. 2.2.2].
2This definition extends to a homomorphism via the universal property of free groups.

1

2 CHAPTER 1. PRELIMINARIES

� 〈S |R〉 is finitely generated if S is finite, and it is finitely presented if
both R and S are finite.

When dealing with specific sets S and R, it is common to omit their curly
brackets:3

〈{s1, . . . , sn}|{r1, . . . , rm}〉 = 〈s1, . . . , sn |r1, . . . , rm〉.

Also, as explained above, the elements of R determine which words in L∗S
represent the neutral element in 〈S |R〉. To underline this function, we often
write

〈s1, . . . , sn |r1, . . . , rm〉 = 〈s1, . . . , sn |r1 = 1, . . . , rm = 1〉.
Finally, we can treat ri = 1 as a formula: If, for example, r1 = s1s2s−1

1 s−1
2 , we

can write s1s2 = s2s1 instead of s1s2s−1
1 s−1

2 = 1.

Example 1.2. � Fn = 〈s1, . . . , sn |∅〉 is the free group with n generators.

� Zn = 〈s1, . . . , sn |[si , sj] ∀i , j ∈ J1,nK〉 = 〈s1, . . . , sn |sisj = sj si ∀i , j 〉
is the n-th free abelian group.

�
Z/nZ = 〈s|sn = 1〉 is the cyclic group of order n.

Group presentations satisfy a universal property which we will need later
on. Its proof can be found in various places, for example in [3, Sect. 2.2.3].

Theorem 1.3 (Universal property of group presentations). Let S be an
arbitrary set and R ⊂ L∗S . Then for any group G and any map ϕ : S → G
with the property that ϕ(r) = e ∀r ∈ R,4 there exists a unique homomorphism
ϕ : 〈S |R〉 → G that extends ϕ.

1.2 Graphs

Definition 1.4. � A graph Γ is a triple (V ,E , ∂) consisting of the vertex
set V = V (Γ), the edge set E = E (Γ) and the edge map
∂ = ∂Γ : E → {{u, v}| u, v ∈ V }.

� Two vertices u, v ∈ V are adjacent if {u, v} ∈ ∂(E). An edge e ∈ E is
called a loop if |∂(e)| = 1.

� If ∂ is injective, i.e. there are no double edges, we identify E with ∂(E)
and thus omit ∂ from the definition. A graph with injective edge map
and without loops it called simplicial.

3The sets don’t have to be finite, I just assume it here for convenience.
4Since ϕ is only defined on letters, we apply it to r letter-wise and multiply the images.

1.2. GRAPHS 3

� In a simplicial graph, the order of a vertex v ∈ V is the number of its
neighbours, i.e. the number of vertices adjacent to v .

� A path is an n-tuple (v1, . . . , vn) ∈ V n where vi and vi+1 are adjacent
for all i and vi 6= vj for all i 6= j .

� A cycle is a path of length n ≥ 3 where v1 and vn are also adjacent.

We want to highlight a few examples of simplicial graphs. See Figure 1.1
for illustration.

Example 1.5. � A simplicial graph is a tree if it does not contain a cycle.
A simplicial graph is a tree if and only if for each u 6= v ∈ V there is
exactly one path from u to v , i.e. v1 = u and vn = v .

� A simplicial graph is a complete graph if every pair of vertices is con-
nected, i.e. E = {{u, v}| u 6= v ∈ V }.

� The graph Pn := {{v1, . . . , vn}, {{vi , vi+1} | i ∈ J1,n − 1K}} is called
the n-th path graph.

� The graph Cn := {{v1, . . . , vn}, {{vi , vi+1} | i ∈ J1,n − 1K} ∪ {v1, vn}}
is called the n-th cycle graph.

Definition 1.6. Let Γ,∆ be graphs.

� ∆ is called a subgraph of Γ if V (∆) ⊂ V (Γ), E (∆) ⊂ V (Γ) and
∂∆ = ∂Γ|E(∆). (Again, if there are no double edges, the last condition
can be omitted.)

� ∆ is called an induced subgraph of Γ if it is a subgraph and all edges in
Γ connecting vertices in ∆ (with respect to ∂Γ) are also edges in ∆.

If Γ is simplicial, this simplifies to the following:5

∀v ,w ∈ V (∆) : {v ,w} ∈ E (Γ)⇔ {v ,w} ∈ E (∆).

5The “⇐” stems from the fact that ∆ is a subgraph of Γ.

4 CHAPTER 1. PRELIMINARIES

(a) A tree
(b) The complete graph with 6 vertices

(c) The path graphs P2, P3, and P4

(d) The cycle graphs C3, C4, and C5

Figure 1.1: A few examples of simplicial graphs.

1.3 Cayley Graphs

Cayley graphs are a useful way to visualize groups.They are an essential tool
of geometric group theory because they make it possible to link abstract
algebraic properties of groups to more or less intuitive geometric properties
of graphs, or rather of their metric realization6. For example, if the Cayley
graph of a given group is Gromov-hyperbolic, then the group itself must be
finitely presented.

We won’t be making much use of this link, but it should serve as a moti-
vation to study Cayley graphs in the first place. For an excellent introduction
to geometric group theory, see C. Löh’s aptly titled book [3].

Definition 1.7. Let G be any group and S ⊂ G be a generating set of G .
The Cayley graph Cay(G , S) is defined as the graph Γ = (V ,E) whose vertex
set consists of the elements of G , i.e. V = G , and whose edges are defined by

6The metric realization of a graph is a continuous metric space which “looks” like that
graph, where each pair of adjacent vertices has distance 1.

1.4. DIRECTED GRAPHS 5

which elements of G can be directly linked via the right-multiplication of an
element of S , i.e.:

E = {{g , gs} | g ∈ G , s ∈ S}.

For examples of Cayley graphs see Figure 1.2.

(a) Cay
(Z/6Z, {1}). (b) Cay

((
Z/2Z

)3
,S
)

, where

S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Figure 1.2: Examples of Cayley graphs.

Corollary 1.8 (Basic Properties). a) Every vertex in Cay(G , S) has the same
order, namely |S |.

b) Cay(G , S) is a tree if and only if G is generated freely by S .

1.4 Directed Graphs

We later make use of a theorem about directed graphs, which makes this section
necessary. Directed graphs are very similar to graphs7, the key difference
being that, as the name suggests, their edges have a sense of direction.
Mathematically, this means that these are not sets but (ordered) pairs.
Unfortunately, the theorem requires an extensive amount of terminology8.

7One might call them undirected graphs to avoid confusion, but since I rarely reference
directed graphs, I choose to keep the shorter name.

8Most of the terminology can also be found in [4, Chap. 16]

6 CHAPTER 1. PRELIMINARIES

Definition 1.9. � A directed graph, or digraph, Γ is a tuple (V ,E) con-
sisting of the vertex set V = V (Γ) and the edge set E = E (Γ), where
E consists of pairs of distinct vertices: E ⊂ V 2\{(v , v)|v ∈ V }.9

� The underlying graph Γ′ of a digraph Γ = (V ,E) is its undirected
counterpart:

Γ′ = (V , {{u, v}|(u, v) ∈ E}).

We want to classify a handful of ways in which different vertices in a
digraph can be related. See Figure 1.3 for illustration.

Definition 1.10. Let Γ = (V ,E) be a digraph and u, v ∈ V .

� We say that u and v are adjacent if they are so in the underlying graph.

� We say that u is connected to v if (u, v) ∈ E (in this order).

� A path in Γ is an n-tuple (v1, . . . , vn) ∈ V n , n ≥ 1, where vi is connected
to vi+1 for all i and vi 6= vj for all i 6= j .

� A cycle is a path of length n ≥ 2 where vn is connected to v1.

� We call v a successor of u if there is a path in Γ from u to v . In this
case, u is a predecessor of v .10

� We call v a direct successor of u if it is a successor of u and they are
adjacent. In this case, u is a direct predecessor of v .

� We call u a source if it has no direct predecessors.

� We call v a sink if it has no direct successors.

Figure 1.3: Es an example, v1 is connected to v2. In fact, v1 is a direct
predecessor of v2, who in turn is a direct successor of v1. In particular, v1 and
v2 are adjacent. v3 is a successor of v1, though not a direct one. v1 is a source
and v3 is a sink. There is a path from v2 to v3, but none from v3 to v2.

9Alternatively, this could be referred to as a simplicial directed graph because, of course,
the definition can be broadened analogously to that of graphs in Section 1.2 to account for
double edges and loops.

10Note that each vertex is a successor (and predecessor) of itself.

1.4. DIRECTED GRAPHS 7

In addition to this basic terminology, we need to label certain classes of
digraphs. Figure 1.4 presents an example.

Definition 1.11. Let Γ = (V ,E) be a directed graph.

� Γ is finite if V (and thus E) is finite.

� Γ is acyclic if it does not contain any cycles.

� Γ is weakly connected if its underlying graph Γ′ is connected, i.e. if for
every pair of vertices u, v ∈ V , there is a path in Γ′ from u to v .11

� A weakly connected component of Γ is a non-empty induced subgraph12

of Γ that is weakly connected and maximal (in terms of the subset-
ordering) with this property.

Figure 1.4: This graph is finite, but not acyclic. It has two weakly connected
components and is thus not weakly connected.

Finally, we can state the theorem, preceded by a lemma.

Lemma 1.12. Let Γ be a finite acyclic digraph where for each vertex
v ∈ V (Γ), any two direct successors of v have a successor in common13.
Then any two (arbitrary) successors of v have a successor in common.

11In contrast, Γ would be called strongly connected if such a path exists in Γ for all
u, v ∈ V . Every strongly connected digraph is weakly connected, and no (non-trivial)
strongly connected digraph is acyclic.

12See Definition 1.6 with minor abuse of notation.
13To clarify, this means that there exists a vertex which is a successor of both of these

vertices. I will also refer to this as (one of) their common successor(s).

8 CHAPTER 1. PRELIMINARIES

Proof. The idea of the proof is to cast a sort of “net” of paths to common
successors over Γ (see Figure 1.5). Let v ∈ V (Γ) be fixed and let a, b ∈ V (Γ)
be two successors of v with paths (v , a1, . . . , an = a) and (v , b1, . . . , bm = b)
from v to a and b respectively. First we find some common successor c1 of a1

and b1. The next step is to find a common successor c2 of a2 and c1, which is
automatically a common successor of a2 and b1. For this we repeatedly find
common successors of vertices on the path from a1 to c1 and on the paths
that arise from these (again, see Figure 1.5). This process stops because Γ
is acyclic (so every vertex appears at most once) and finite. Similarly, we
can now find a common successor ci of ai and ci−1 until we reach i = n, i.e.
ai = a. At this point we have found a common successor d1 := cn of a and b1.
Now we can find d2, . . . , dm , analogously defined. Finally, dm is a common
successor of a and b.

Figure 1.5: On the left we see an example of how to find c2. On the right
we see how this process yields a common successor of a and b. Solid lines
indicate direct successors and dotted lines indicate successors of any sort.

Theorem 1.13. Let Γ be a (non-empty) finite weakly connected acyclic
digraph where for each vertex v ∈ V (Γ), any two direct successors of v have
a successor in common. Then Γ has exactly one sink.

Proof. First we prove that each vertex in Γ has precisely one sink as a
successor (in particular that there is at least one sink), using Lemma 1.12 to
show that this is the maximum amount. Then we lead the assumption that
there is more than one sink to a contradiction.

1.4. DIRECTED GRAPHS 9

Let v ∈ V be a vertex. Define a path starting at v by repeatedly choosing
some direct successor of the last vertex of the path. Since Γ is acyclic, this is
indeed a path, meaning that no vertex appears more than once, and because
Γ is finite, this process has to stop. By definition, the last vertex of this path
has no direct successor, in other words it is a sink. Since the path started at
v , this sink is a successor of v .

Now assume v has two different sinks as successors. Lemma 1.12 tells us
that these must have a common successor. But since they have no successors
other than themselves, this cannot be .

Let S ⊂ V be the set of all sinks in Γ. Define a function f : V → S that
maps each vertex to the sink it precedes. Assume that there exist two distinct
sinks s1, s2 ∈ S . Let Mi := f −1({si}), i ∈ {1, 2}. Observe that si ∈ Mi 6= ∅.
We want to show that M1 is not weakly connected to M2 in Γ.14 So suppose
they are. Let v1 ∈ M1 and v2 ∈ M2 be weakly connected. Without loss of
generality they are adjacent15. But this means that, again without loss of
generality, v1 is a direct predecessor of v2, in particular that both s1 and s2

are successors of v1 .
So Γ must have more than one weakly connected component, in contra-

diction to our premise. Thus there can only be one sink.

To make some more use of all this jargon and to aid ourselves later on,
here is a quick corollary.

Corollary 1.14. Let Γ be a finite acyclic digraph. Then each weakly connected
component of Γ contains a source. In particular, Γ has a source (assuming it
is non-empty) and must be weakly connected if it has just one.

Proof. Let ∆ be a weakly connected component of Γ and let v ∈ ∆. We
define a path similar to the one in the proof of Theorem 1.13, except that it
ends in v and we successively choose direct predecessors. As we’ve seen, this
process stops and does yield a path, the starting point of which by definition
has no direct predecessor, thus is a source. Because there is a path from this
source to v (in Γ and thus in the underlying graph), they both lie in the same
weakly connected component.

14As a sidenote, Mi itself is weakly connected, so this shows that Mi is indeed a weakly
connected component.

15Otherwise change s2 so that its preimage under f contains the first vertex of the path
from v1 to v2 that isn’t contained in M1 and change v1 and v2 accordingly.

Chapter 2

Right-Angled Artin Groups

2.1 Definition

Right-angled Artin groups, RAAGs for short, are a very interesting and large
class of groups that contain free groups on one end and free abelian groups
on the other. They are defined by a (usually finite) number of generators and
a set of commuting relations between them. This can be nicely visualized by
using a simplicial graph whose vertices represent the generators and whose
edges indicate which generators commute.

Definition 2.1. Let Γ = (V ,E) be a simplicial graph. The right-angled
Artin group A(Γ) assoziated to Γ is defined as follows:

A(Γ) = 〈V | [v ,w] = 1 ∀{v ,w} ∈ E 〉.1

Example 2.2. � The complete graph Γ = ({v1, . . . , vn}, {{vi , vj}|i 6= j})
(all vertices are connected) generates the free abelian group A(Γ) = Zn .

� The disconnected graph Γ = ({v1, . . . , vn},∅) generates the free group
A(Γ) = Fn .

2.2 Properties

Right-angled Artin groups have some nice properties that make it compar-
atively easy to work with them. More specifically, there are a number of
properties that follow directly from the structure of the underlying graph.

1Of course, it is also possible to define RAAGs the opposite way, i.e. to only have
non-adjacent vertices commute. Both definitions are used in the literature.

10

2.2. PROPERTIES 11

For instance, induced subgraphs2 of Γ yield subgroups of A(Γ). Let’s see how
this works.

Theorem 2.3. Let Γ be a simplicial graph and ∆ be an induced subgraph of
Γ. Then A(∆) is a subgroup of A(Γ).

Proof. Let ϕ̃ : V (∆) → A(Γ), v 7→ v . This extends to a homomorphism
ϕ : A(∆)→ A(Γ) via the universal property of group presentations described
in Theorem 1.3. To prove that A(∆) is a subgroup of A(Γ), we need to show
that ϕ is injective, which can be done by finding a left inverse to it: Let

ψ̃ : V (Γ)→ A(∆), v 7→

{
v v ∈ V (∆)

1 v /∈ V (∆)
.

This, too, extends to a homomorphism ψ : A(Γ) → A(∆).3 Observe that
(ψ ◦ ϕ)(v) = v for all v ∈ V (∆). Finally, let π : V (∆)→ A(∆), v 7→ v . This
clearly extends to the identity on A(∆), but ψ ◦ ϕ is also an extension, and
thus by Theorem 1.3 these have to be equal, meaning that ψ is a left inverse
to ϕ.

From this point onward let Γ be a simplicial graph.

Corollary 2.4. a) Let v ,w ∈ V (Γ) not be adjacent in Γ. Then

〈v ,w〉A(Γ)
∼= F2.

b) V (Γ) is abelian if and only if Γ is complete.

Proof. a) Let ∆ be the induced subgraph of Γ containing only v and w , that
is V (∆) = {v ,w} and E (∆) = ∅. Then A(∆) = 〈v ,w |∅〉 ∼= F2 and
A(∆) ↪→ A(Γ) as we’ve just seen. Thus 〈v ,w〉A(Γ)

∼= F2.

b) It is clear that V (Γ) is abelian if Γ is complete. On the other hand, if
there are v ,w ∈ V (Γ) that aren’t adjacent in Γ, then we’ve just seen that
these elements do not commute, thus V (Γ) isn’t abelian.

2See Definition 1.6.
3Note that this is only true because ∆ is an induced subgraph. Otherwise the requirement

“ψ(r) = e” in the universal property wouldn’t be fulfilled.

Chapter 3

The Word Problem in RAAGs

3.1 What is the Word Problem?

Let G = 〈S |R〉 be any finitely presented group. The word problem states the
following: Given any word w ∈ L∗S with letters in LS = (S ∪ S−1), is there an
algorithm to determine whether or not w represents the identity in G? We say
that the word problem is solvable for a group if such an algorithm exists. This
might seem like an easy problem at first glance because in many of the widely
known types of groups the word problem is solvable in a straightforward
manner (e.g. finite groups, free groups, free abelian groups). But in general
such an algorithm is hard or even (provably) impossible to find.

3.2 Normal Forms

One possible way to solve the word problem in a given group is to find a
so-called normal or preferred form for its elements. For now, this will be
a subset of all words N ⊂ L∗S such that every element in G is represented
by precisely one word in N . Of course there are many different options to
choose such a normal form. The trick is to find one that can be generated by
an algorithm, meaning that whenever two words represent the same element,
the algorithm maps them to the same word in N .

To illustrate this, we will find such a normal form, or rather the cor-
responding algorithm, for free abelian groups. The usual normal form for
elements in Zn is an n-tuple with entries in Z (the cartesian form). I would
like to describe a different normal form which will seem more complicated
but is essentially the same. This is simply a stepping stone towards RAAGs.

12

3.2. NORMAL FORMS 13

We have
Zn = 〈z1, . . . , zn | [zi , zj] = 1 ∀i , j ∈ J1, nK〉.

Given any word w = a1 · · · am with letters ai ∈ LS , where S = {z1, . . . , zn},
we can iteratively apply a set of simplifying moves:

i) If ai = a−1
i+1 for some i , remove aiai+1 from w .

ii) For some i let j , k be such that ai = z ε1j , ai+1 = z ε2k , ε1, ε2 ∈ {1,−1}. If
j > k , replace aiai+1 by ai+1ai in w .

The second move sorts the letters by their chosen order and the first move
simply applies the definition of inverses in groups to formal inverses in words,
eliminating redundancy.1 It is intuitively clear that these moves don’t change
the element w represents, that iteratively applying them will at some (finite)
point stagnate, that the order in which they are applied does not change
the end product, which we will call the word’s reduced form, and, most
importantly, that every element in Zn corresponds to precisely one such
reduced form, in other words that this reduction process yields a normal form.
By reducing (i.e. simplifying to the point of stagnation) every word in L∗S ,
we get N . It follows from the explanation above that

N = {z c1
1 · · · z cn

n |ci ∈ Z},

where of course z ci
i stands for |ci | copies of the letter z

sgn(ci)
i .

In general, once we have an algorithm that produces a normal form, the
word problem is thusly solved: Given a word w , find its normal form and
compare it to that of the identity. If these match, w must represent the
identity, if they don’t, w cannot do so.

Example 3.1. With the algorithm above, we get that the normal form of
the identity is the empty word ε. As an example, we will determine whether
the word z2z−1

1 z3z−1
2 z−1

3 z1 represents the identity in Z3:

z2z−1
1 z3z−1

2 z−1
3 z1

(ii)
= z2z−1

1 z−1
2 z3z−1

3 z1

(i)
= z2z−1

1 z−1
2 z1

(ii)
= z2z−1

1 z1z−1
2

(i)
= z2z−1

2

(i)
= ε.

1To get from here to the cartesian form, we simply count the number of letters corre-
sponding to each generator zi and choose the sign based on whether the letters are inverses
or not (they are either all zi or all z−1

i). This will be the i -th entry.

14 CHAPTER 3. THE WORD PROBLEM IN RAAGS

So indeed it does.

Observe that by omitting (ii), we receive an algorithm to find normal
forms in free groups. Indeed, by modifying (ii), we can generalize this method
to work for any right-angled Artin group. This, however, we will do more
rigorously.

3.3 Normal Forms in RAAGs

Let Γ be a simplicial graph with vertex set V = {z1, . . . , zn}. Given a word
w ∈ L∗V , we define the following labelling function:

Definition 3.2. For w = a1 · · · an , ai ∈ LV , let σw : J1,mK→ J1, nK be such
that ai = z εiσw (i), where εi ∈ {1,−1} is arbitrary.

To illustrate, if w = z1z1z−1
2 , we have σw (1) = 1, σw (2) = 1 and σw (3) = 2.

Just as before, we describe a set of simplifying moves:

i) If ai = a−1
i+1 for some i , remove aiai+1 from w .

ii) For some i , j with i < j , if zσw (j) is adjacent to all zσw (i), . . . , zσw (j−1) in
Γ and σw(i) > σw(j), replace ai · · · aj with ajai · · · aj−1 in w .

Refer by r(w) to the reduced form2 of any word w (in a second we will
show that this is well-defined). What follows is an array of lemmata that
describe certain robustness properties of the reduction process.

Lemma 3.3. Applying (i) and (ii) iteratively will at some point yield a
word to which neither (i) nor (ii) are applicable, i.e. the reduction process
terminates.

Proof. Both moves don’t make the word longer, and since (i) actively reduces
its size it can only be applied a finite number of times.

With this in mind we can prove the lemma by proving it purely for (ii);
(i) might mess the proof up, but it can only do so finitely often. First look
at all the letters in w that are z1 or its inverse. These can never be moved
to the right, only to the left, so it is clear that they can only move finitely
often. Next look at all the letters that are z2 or its inverse. These can only
be moved to the right if there is a letter z1 or z−1

1 to their right, which again
can only happen finitely often, so they, too, are limited in their number of
moves. Inductively we can see that this applies to all letters and thus to w as
a whole.

2To reiterate, by this we mean the result of repeatedly simplifying w until there is
nothing left to simplify.

3.3. NORMAL FORMS IN RAAGS 15

Lemma 3.4. The order in which (i) and (ii) are applied does not matter, i.e.
r(w) is well-defined.

Proof. Let w be any word with letters in L. The proof consists of two steps:
First we show that whenever two different simplifying moves are applicable
to w , we can apply a set of moves to each of the resulting words to reach the
same word (see Figure 3.1 for illustration). Then we translate the problem
into the language of directed graphs3 and apply Theorem 1.13.

Figure 3.1: w1 and w2 can always be simplified to the same word in some way.

For the first step, we need to check three cases, namely when (i) and (ii)
are applicable at the same time and when either of them is applicable at two
positions. In each case we will look at specific examples of words, but the
general case follows directly from these through index swapping, inversion
and multiplication from the left and the right. We will also omit cases where
the moves don’t interfere with one another since their solution is obvious. For
convenience, let v , v ′, v ′′ always be words in L whose letters all commute with
z1, and let z2 commute with z1.

� “(i), (ii)”: Let w = z2z−1
2 vz1. Then (i) and (ii) are applicable and we

have
w1 = vz1,w2 = z2z1z−1

2 v

or
w1 = vz1,w2 = z1z2z−1

2 v .

In the first case, we can apply (ii) again to reach the second case. Here
we apply (ii) to w1 and (i) to w2 to reach the word z1v both times.

Now let w = vz1z−1
1 . Then we have

w1 = v ,w2 = z1vz−1
1

or
w1 = v ,w2 = z−1

1 vz1.

3See Section 1.4.

16 CHAPTER 3. THE WORD PROBLEM IN RAAGS

In both cases we can commute the last letter in w2 with v and then
apply (i), resulting in v = w1.

� “(i), (i)”: Let w = z1z−1
1 z1. Although (i) is applicable in two different

places, the result is the same both times, namely z1.

� “(ii), (ii)”: Let w = z2vz2v ′z1v ′′z1. Then no matter how (ii) is applied,
we can always reach z1z1z2vz2v ′v ′′ from there.

This concludes step one. Now we define a directed graph (whose vertices
are words) in the following way: The first vertex is the word w . From here,
we successively apply (i) and (ii) to each existing vertex, add the outcomes
as new vertices and connect it to them (in this direction). The resulting
digraph Γ has exactly one source, namely w , so by Corollary 1.14 it is weakly
connected. Furthermore, Lemma 3.3 shows that Γ is both finite and acyclic
(otherwise the reduction process wouldn’t have to terminate). Lastly, we’ve
just shown in step one that Theorem 1.13 is applicable, so we know that Γ
has precisely one sink. But a sink, by definition, is an unsimplifiable, thus
reduced, word. So translating this back, we see that w can only be reduced
in one way.

Lemma 3.5. r(r(w)) = r(w).

Proof. By definition r(w) is a word that cannot be simplified further. Thus
applying r(.) again has no effect.

Lemma 3.6. r(w) and w represent the same element in A(Γ).

Proof. We only need to check that applying (i) or (ii) doesn’t change the
element which a word represents. Conveniently, they are designed for precisely
this purpose: (i) is merely the definition of an inverse, and (ii) possesses this
property because only letters whose counterparts in A(Γ) commute may be
swapped.

We now want to show that there is a one-to-one correspondence between
reduced words in L∗V (Γ) and elements in A(Γ). For this, we define a group

structure on H := {w ∈ L∗V |w is reduced, i.e. r(w) = w} and show that
there is an isomorphism from H to A(Γ).

Lemma 3.7. Define multiplication in H as concatenation plus reduction:
v ◦ w := r(vw). Then (H , ◦) is a group.

Proof. The neutral element is the empty word and inverses are formal inverses.
It remains to show that ◦ is associative.

3.3. NORMAL FORMS IN RAAGS 17

Let a, b, c ∈ H . Observe that both a · r(bc) and r(ab)c are merely
simplifications of the word abc, so by Lemma 3.4 we know that they get
reduced to the same word:

a ◦ (b ◦ c) = r(a · r(bc)) = r(r(ab)c) = (a ◦ b) ◦ c.

Now let ϕ : H → A(Γ) map words to their respective elements. Lemma 3.6
tells us that this is a homomorphism.

Lemma 3.8. The kernel of ϕ is trivial: ker(ϕ) = {ε}.

Proof. Let w = a1 · · · am ∈ ker(ϕ), m ≥ 0.4 In particular, w is reduced. We
first want to show that for each z ∈ V there is an equal amount of ai ’s equal
to z as there is of ai ’s equal to z−1. Fix a z ∈ V and consider the induced
subgraph ∆ of Γ consisting only of z together with the homomorphism

ψ : A(Γ)→ A(∆), v 7→

{
z v = z

1 v 6= z

from the proof of Theorem 2.3 which, when dealing with words, simply
removes all the letters apart from z and z−1. We know that w represents the
neutral element in A(Γ), so ψ(w) must also be 1, meaning that all the z ’s
and z−1’s in w perfectly cancel.

Now assume m > 0. Let i be minimal such that ai = a−1
1 . We know that

i > 2 because otherwise w would start with a1a−1
1 , which could be further

simplified. Assume that zσw (1) is adjacent to all zσw (2), . . . , zσw (i−1) in Γ. For
w to be reduced, it must hold that σw(1) < σw(2) (otherwise they would
have been swapped in the reduction process). But because of σw (1) = σw (i),
this means that σw(2) > σw(i), and since zσw (i) = zσw (1) is adjacent to all
zσw (2), . . . , zσw (i−1), (ii) can be applied to w , so w is not reduced .

Thus there is a j ∈ J2, i − 1K such that zσw (1) and zσw (j) aren’t adjacent.
Once again, we look at an induced subgraph of Γ. Let ∆′ = ({zσw (1), zσw (j)},∅)
and ψ′ : A(Γ) → A(∆′) just like in Theorem 2.3. We know thanks to
Corollary 2.4 that A(∆′) is free. As mentioned earlier, an element of a free
group is the neutral element precisely if any word representation of it is
reducible to the empty word only by cancelling letters with their formal
inverses. One representation of ψ′(ϕ(w)) is the word w ′ defined by removing
all the letters from w apart from zσw (1) and zσw (j) and their formal inverses,
which, by this logic, cannot represent the neutral element. But this means
that ψ′(ϕ(w)) and, in particular, ϕ(w) aren’t neutral. Thus w /∈ ker(ϕ) .

4m = 0 would mean that w is the empty word.

18 CHAPTER 3. THE WORD PROBLEM IN RAAGS

Theorem 3.9. For any two words v ,w ∈ L∗, r(v) = r(w) if and only if v
and w represent the same word in A(Γ).

Proof. In Lemma 3.8 it was shown that ϕ is a bijection. The statement
follows from this.

This means that H can be used as a normal form and, via the process
described earlier, that we have solved the word problem in right-angled Artin
groups.

3.4 Pilings

There is a nice way to visualize the normal form we’ve just found. As it
happens, it lets us solve the word problem in RAAGs in linear time (in
reference to word length)5. This method was introduced in [1].

Let Γ be a simplicial graph with vertex set V = {z1, . . . , zn}, and let
i ∈ J1,nK. Imagine n ordered vertical strings (see Figure 3.2). Place a
“⊕” symbol on top of the i -th string and let it “slide” to the bottom. Now
for every j ∈ J1, nK such that zi and zj are not adjacent in Γ, place a neutral
“©” symbol on the j -th string in the same manner as before. The resulting
picture is called the piling πΓ(zi) of zi . The piling of z−1

i is produced similarly,
using “	” instead of “⊕”.

Figure 3.2: On the left we see n = 4 vertical strings. On the right we see the
piling of z2 in A(P4).6

More rigorously, the strings may be thought of as (initially empty) words,
the symbols “⊕” and “©” may be distinct letters, and “	” may be the formal
inverse of “⊕”.

Now let w = a1 · · · am ∈ L∗V . To find the piling of w , we start with
πΓ(a1). On top of this we place πΓ(a2), which we let slide down just as
before. Should a “⊕” land on a “	” or vice versa, the following cancellation
occurs: Let i be the index of the string on which it happened. Now on

5I will not explicitly prove this, but it is fairly straightforward.
6For a definition of P4 see Section 1.2.

3.4. PILINGS 19

every string whose corresponding vertex is not adjacent to zi , remove the
top two symbols, which must necessarily be “©”.7 Finally, remove the initial
“⊕” and “	” symbols. In our more rigorous setting, this corresponds to the
following: First, exchange all “©” symbols in the piling of a2 with their formal
inverse. Then concatenate its words to their respective counterparts in πΓ(a1)
with subsequent cancellation of formal inverses. We repeat this process with
a2, . . . , am . The result is called the piling πΓ(w) of w (see Figure 3.3).

Figure 3.3: From left to right we see the pilings of z2, z2z−1
1 , z2z−1

1 z−1
2 , and

z2z−1
1 z−1

2 z4 in A(P4).

We now want to show that the piling of any word in L∗V is identical to
that of its reduction and that no two reduced words generate the same piling.
In other words, we want to show that πΓ(.) generates a normal form.

Theorem 3.10. Let w ∈ L∗V . Then πΓ(r(w)) = πΓ(w).

Proof. We need to show that applying the simplifying steps (i) or (ii) to w
does not change its piling. Note that (i) has the same effect as the cancellation
process included in the definition of a piling, so it obviously does not change
it. As for (ii), observe that the order in which pilings of adjacent vertices are
dropped does not matter. This is because neutral symbols are only placed on
strings whose corresponding vertices are not adjacent (see Figure 3.4). This
proves the theorem.

Figure 3.4: From left to right we see the pilings of z1z2 (or z2z1), z2z−1
3 (or

z−1
3 z2), and finally z2z4 and z4z2 (which are not adjacent) in A(P4).

7I leave it as a challenge for the reader to explain why this is true.

20 CHAPTER 3. THE WORD PROBLEM IN RAAGS

Theorem 3.11. Let w1,w2 ∈ H be distinct. Then πΓ(w1) 6= πΓ(w2).

Proof. Assume that πΓ(w1) = πΓ(w2). It is not hard to see that when
generating a piling of a reduced word, no cancellation can occur. So we know
that w1 and w2 must have the same length because otherwise, πΓ(w1) and
πΓ(w2) would contain different amounts of “⊕” and “	”. Let w1 = a1 · · · am

and w2 = b1 · · · bm . Without loss of generality, a1 6= b1. Let i = σw1(1) and
j = σw2(1). So the i -th string of πΓ(w1) and the j -th string of πΓ(w2) must
start (from the bottom) with either a “⊕” or a “	”. Since they are the same,
both strings must have this property in both pilings. But this means that
zi and zj commute and are in a position to do so in both w1 and w2, which
means that (ii) is applicable to either w1 or w2, depending on which of i and
j is smaller. Thus one of them is not reduced .

To reiterate, not only are pilings a visually more appealing normal form
compared to the one we found in the previous section, but they are also com-
putationally superior. We will use this to our advantage when implementing
an algorithm to solve the word problem in Chapter 4.

3.5 Side Note: Properties of Pilings

Before moving on, I would like to ponder pilings for a moment. As we’ve seen,
they take the form of n words made up of three distinct letters. However, not
all such constructs are pilings (for a given simplicial graph Γ) because some
do not lie in the image of πΓ. This raises the question of how to determine
whether or not a given construct, which we shall call an abstract piling8, is
indeed a piling.9

As a start, let Γ = P4. In Figure 3.5, we see two abstract pilings which are
not “real” pilings (in relation to Γ)10. For example, the left piling suggests
that the first generator has to commute with the last one. How can we see at
a glance that the right piling also cannot stem from Γ? Suppose it did. Each
“⊕” and “	” requires a certain number of “©” to accompany it. The “	” on
the first (left-most) string, for instance, requires two “©” since in Γ there are
two vertices which aren’t adjacent to z1. The second “	” only requires one.

8Terminology courtesy of [1].
9To clarify, there are abstract pilings which are not pilings in relation to any simplicial

graph. Additionally, however, different graphs may not permit the same pilings. We will
focus on the latter.

10However, they are pilings in relation to another graph. Can you figure out which one?

3.5. SIDE NOTE: PROPERTIES OF PILINGS 21

Figure 3.5: Examples of abstract pilings.

To generalize, let xi be the number of “⊕” and “	” symbols on the i -th
string and let yi be the number of vertices in Γ which aren’t adjacent to the
i -th vertex. Then the piling should contain

m :=
n∑

i=1

xi · yi

“©” symbols. In the case of the right piling, m amounts to six, however
there are only four “©” symbols present .

Satisfying this formula is necessary for being a piling. Sadly, it is not
sufficient since it does not take the positions of the “©” symbols into account.
In order to be certain about the validity of a given abstract piling, we need
to follow a simple algorithm: As long as any “⊕” or “	” is “exposed”, i.e.
at the top of a string (which is always the case except in the empty piling),
remove it along with the top letter of every string whose corresponding vertex
is not adjacent to that of the initial string. If any of those strings was empty
or did not have a “©” at the top, then the abstract piling cannot be “real”
(in relation to Γ). On the other hand, if we reach the empty piling, then it
must be “real”.

Note that this algorithm can be modified to produce a word whose image
under πΓ is the given piling (assuming the algorithm reaches the empty
piling): Each step is equivalent to a cancellation step in the piling-generating
algorithm. So by recording the letters that would be needed for such a
cancellation (in order), we must get a word which represents the inverse of
the element being represented by the initial piling (because together they
yield the empty piling). Thus, via inversion, we have found a word with the
requested property. Indeed, by always choosing the right-most exposed “⊕”
or “	”, we end up with its reduction.

22 CHAPTER 3. THE WORD PROBLEM IN RAAGS

As a final note, take a look at the challenge posed in Footnote 10 (if you
haven’t already). It can be generalized in the following way: Given a set
of abstract pilings, find the set of graphs for which they are “real”11. More
precisely, we are interested in isomorphism classes of graphs (since isomorphic
graphs generate isomorphic RAAGs). We can look at each piling individually
and then take the intersection of the resulting sets of graphs, so the challenge
can be rephrased to only allow for a single abstract piling instead of a set.
From the width of the piling we can deduce the number of vertices needed. It
is immediately clear that the vertices corresponding to exposed “⊕” and “	”
must all be adjacent. As an example, the pilings in Figure 3.5 infer that, if
we label the vertices canonically, z1 and z4 as well as z3 and z4 are adjacent.
The same is true for the bottom-most such symbols, in this case z1 and z2.
Alas, from here on out, as far as I can tell, finding the remaining adjacencies
is generally a matter of trial-and-error. The difficulty lies in assigning the
neutral symbols to the non-neutral ones12. It is not hard to see that the first
piling in Figure 3.5 allows for four isomorphism classes of graphs whereas the
second piling only allows for one (I urge the reader to find these). Generally,
however, it seems to be very difficult to find all possible graphs and then
check for isomorphisms.13

To give a rough upper bound for the difficulty of the first part (i.e. finding
the graphs), suppose the given piling has n strings. If we label the vertices of

the graphs, there are 2(n
2) =

√
2n(n−1) different graphs with n vertices. Now

let mi be the number of non-neutral symbols in the i -th string (thus the
reduced word generating the given piling contains mi instances of zi or z−1

i).
Then the number of words with these amounts of certain letters and their
inverses (in their given order) is

M :=
n∏

i=1

(
m̃i

mi

)
,

where m̃i :=
∑i

j=1 mi .
14 Thus, relying only on trial-and-error would

require us to check (no more than)

N :=
√

2n(n−1) ·M

cases. For the second piling above, this amounts to N = 64 · 24 = 1536.

11i.e. for each graph and each abstract piling there is a word whose piling in relation to
that graph is that piling.

12Neutral symbols are only ever generated in conjunction with non-neutral ones.
13As a result, it may be possible to turn this concept into an entertaining logic puzzle.
14This formula is best understood by iterating backwards, i.e. from n to 1: The mn

letters z±1
n can be placed freely, the next mn−1 letters z±1

n−1 have mn fewer places to go etc.

Chapter 4

Implementation in Java

Our goal is to write a program that takes a simplicial graph Γ as an input
and generates the Cayley graph of A(Γ)1, using pilings as a way to solve the
word problem. In fact, the final program will be easily adjustable to work
for any class of groups for which a word-problem-solving algorithm is known.
I will only outline the parts of the source code which are of mathematical
interest; the complete code can be found in the appendix.

It ought to be mentioned that I am not a computer science but a math-
ematics undergraduate and, while my code runs quite well, one might not
call it “clean”. On top of this, there are probably languages other than Java
that are better-suited for the task at hand, alas Java is the language I know
best. Specifically, I use a software called processing [5] which is designed to
make visual programming much easier. It uses OpenGL for threedimensional
rendering.

4.1 Overview

In order to output a Cayley graph, we require a Graph class, and since graphs
consist of edges and vertices, it should prove useful to implement classes for
both of these as well2. On the other hand, we need to generate the Cayley
graph. We could hard-code the algorithm for RAAGs, but I found it to be of
no significant increase in work to generalize the program, using an abstract
Algorithm class which can be altered to work for a vast class of groups with
solvable word problem.

1Of course I mean the Cayley graph obtained by the generating set V (Γ).
2This is not strictly necessary. I touch on why that is and why we still do it later on.

23

24 CHAPTER 4. IMPLEMENTATION IN JAVA

Our specific algorithm uses pilings, so a Piling class seems appropriate,
along with a Word class, since pilings consist of words.

We will now go through all of these classes in greater detail, using pseudo-
code to highlight a handful of things. The complete source code can be found
in the appendix.

4.2 Vertices, Edges, and Graphs

We need graphs in two instances, once to define the RAAG A(Γ) via the
graph Γ and another time to store the Cayley graph of A(Γ). In a slightly
unorthodox manner, I will define a sort of hybrid Graph class that caters to
both needs. This doesn’t affect performance.

While it is possible to implement graphs without the need for a Vertex class
- using integers instead - we would like to store some information alongside
their mere existence. Specifically, we store the position of the vertex, the
word it represents, and its distance from the vertex of the neutral element3,
all of which is only used in the Cayley graph case. Note that, because we
rarely need this information, it is often computationally advantageous to still
refer to them by integers, namely by their index.

Next up is the Edge class, which is only slightly more complex. We need
to store which vertices are being connected and (in the Cayley graph case)
which generator connects them4, all of which can be done with integers. Since
we are dealing exclusively with undirected graphs, the order in which we store
the vertices does not matter. Thus, we can make our programming lives easier
by sorting them. As a result, fewer checks are required when, for example,
determining if two edges are equal. The following code should clarify this:

1: function Sort(vertex1, vertex2)
2: if vertex1 > vertex2 then
3: return (vertex2, vertex1)
4: else
5: return (vertex1, vertex2)
6: end if
7: end function

3The latter is only used for some rendering options and may be omitted if one has no
need for them. See Section 4.5.

4This is only needed for rendering purposes.

4.3. LETTERS, WORDS, AND PILINGS 25

8: function CompareSorted((v1, v2), (v3, v4))
9: if v1 == v3 and v2 == v4 then

10: return true
11: else
12: return false
13: end if
14: end function

15: function CompareUnsorted((v1, v2), (v3, v4))
16: if (v1 == v3 and v2 == v4) or (v1 == v4 and v2 == v3) then
17: return true
18: else
19: return false
20: end if
21: end function

Finally, we get to the Graph class. Vertices are stored in an ArrayList.
Edges could be treated the same way, but since we may be dealing with
thousands of edges in a graph, it is smarter to store them in an ArrayList of
ArrayLists such that the index of an edge in the outer ArrayList matches the
smaller of the two indices of the vertices it connects. This way, any specific
edge can be found much quicker.

The constructor is only used for the graph defining the RAAG. It takes the
number of vertices (as an integer) and an ArrayList of edges and formats them
appropriately. We add a handful of hasEdge, getEdge, getEdges, getVertices,
addEdge, and addVertex methods along with an adjustPos method, the
functionality and purpose of which is described in Section 4.5.

4.3 Letters, Words, and Pilings

Probably the most straightforward way to deal with letters when programming
is to view them as integers: z1, . . . , zn correspond to 1, . . . , n, and their (formal)
inverses correspond to the (additive) inverses, namely −1, . . . ,−n. Words,
thus, should be lists of integers with a few special functions. Concretely, the
class Word extends the class ArrayList〈Integer〉. To this we add standard
multLeft and multRight functions5 as well as a copy, a getLastLetter, and an
invert function.

5For convenience, we define these such that formal inverses already behave like actual
inverses in that they cancel, meaning that, for example, the word z1z

−1
2 z2 is immediately

changed to z1. This isn’t technically correct, but it never matters.

26 CHAPTER 4. IMPLEMENTATION IN JAVA

Having defined words, we can move on to defining pilings. As described
in Section 3.4, a (rigorous) piling consists of n words with letters {⊕,	,©}
or rather, to keep in line with the convention described above, with letters
{1,−1, 2}. When implementing the algorithm to produce pilings of arbitrary
words, we should not actually generate a piling for each letter (since this
would require more memory space than necessary and would probably be
slower) but merely describe what effect such a piling would have on the piling
of the word. The code should clarify what I mean:

1: function Piling(word , graph)
2: size ← number of vertices in graph
3: piling ← array of type Word of size size

4: for all letters l in word do
5: a ← Absolute(l)
6: v ← a-th word in piling (starting at 1)

7: if the last letter of v has the opposite sign of l then
8: Remove the last letter of v .
9: for all indices k such that the l -th and k -th vertices in graph

are not adjacent do
10: Remove the last letter of the k -th word in piling .
11: end for

12: else
13: Add a letter equal to the sign of l to the right of v .
14: for all indices k such that the l -th and k -th vertices in graph

are not adjacent do
15: Add a “neutral” letter to the right of the k -th word in

piling .
16: end for
17: end if
18: end for

19: return piling
20: end function

4.4. THE ALGORITHM CLASS 27

To solve the word problem, we need to know when a piling is trivial, i.e.
equal to the piling of the neutral element6:

1: function isTrivial(piling)
2: for all words w in piling do
3: if w is not empty then
4: return false
5: end if
6: end for

7: return true
8: end function

4.4 The Algorithm class

Next we define an Algorithm class, which is responsible for generating the
Cayley graph. I chose to make it an abstract class, the only abstract method
being one that determines when a word is trivial, which allows us to use the
whole program for other types of groups as well without much additional work.
As mentioned before, this approach is more general than needed, but it isn’t
much more complex than a more direct one. Also, for better user-experience,
I chose to have the class be a thread.

The Algorithm class stores three things: The output graph, the number
of generators, and an object used to determine the triviality of a word7. The
main algorithm now works as follows: First we add a vertex to the graph g
representing the neutral element. Then we start iterating over the vertices
of g. For each vertex v, we sequentially concatenate all generators 1, . . . ,n
and their inverses to the word associated with v and test whether the result
is already represented by another vertex (this is where the abstract method
isTrivial is used). If it is, we store the index of that vertex in the variable
connected and add an edge from v to that vertex. If it is not, we add a vertex
for it and connect it to v.

6It hasn’t been stated explicitly, but clearly the the piling of the neutral element, or
rather of the empty word, is the piling where every string/word is empty.

7In the case of the right-angled Artin group A(Γ), this object is the graph Γ.

28 CHAPTER 4. IMPLEMENTATION IN JAVA

1: Let g be the output graph

2: function generateCayleyGraph()
3: Add the vertex of the neutral element to g

4: for each vertex v in g do
5: wordv ← the word represented by v

6: for each z in {1,−1, . . . , n,−n} do
7: next ← word concatenated with z

8: index ← −1
9: for each vertex u in g do

10: wordu ← the word represented by u

11: if wordu · next−1 is trivial then
12: index ← the index of u
13: end if
14: end for

15: if index == −1 then
16: Add a vertex representing next to g and connect it to v
17: else
18: Connect v to the vertex at index
19: end if
20: end for
21: end for
22: end function

To have this process not run indefinitely, we add a variable MAX RADIUS
and stop once a vertex reaches this distance from the initial vertex. Note
that the vertices are naturally sorted by their distance from that vertex, so
after one crosses the threshold, all subsequent ones follow suit.

The specifics of how to use the program for right-angled Artin groups as
well as other types of groups can be found in the source code, specifically in
lines 89 - 122 of the setup method.

4.5. VISUALS 29

4.5 Visuals

I will not go into much detail about the visual implementation since most of
it is fairly straight-forward and mathematically not very interesting. However,
there are a few design choices to be highlighted.

First and foremost, how do you get the Cayley graph into an ordered
state? The reader might have noticed in the source code of the Algorithm class
that vertices are spawned with random coordinates between −SPAWN SIZE
and SPAWN SIZE. To bring order to this initial mess, I apply an intuitive,
physical concept: adjacent vertices attract each other, non-adjacent ones
repel one another. A function which handles this is run about a hundred
times per second, making the vertices move slowly to their desired place8.
Clearly, this process is far from deterministic and results may vary, though
not too dramatically, as it turns out. Alternatively, one could try to write
an algorithm which places the vertices in a fixed spot immediately, but I’ve
found that approach to be less illuminating and certainly less flexible.

Much more illuminating – despite its name – is another feature that I
added: “Shadowing”, as I’ve called it, is the ability to make edges which stem
from certain generators less attractive, thus splitting the Cayley graph into
smaller, less strongly connected, subgraphs. This helps visually understand
more complex Cayley graphs because it separates the effects of the shadowed
generators from those of the non-shadowed ones.

Furthermore, there is the option to only show the sphere of the given
radius around the neutral element instead of the whole ball. In this case, all
vertices with that exact distance from the origin are drawn as a small dot.
For extra clarity, I chose to additionally draw the edges from these vertices
to those one less step away.

Finally, I would like to show a few examples of what the program might
produce. However, I urge the reader to try it out for themself because, in
my opinion, most of the intricacy and three-dimensionality of some of these
graphs gets lost in a still image. Figure 4.1 illustrates the usage of shadowing
on the two groups A(P3) and Z4, while Figure 4.2 showcases the ball drawing
feature.

8See the source code: Method adjustPos in class Graph.

30 CHAPTER 4. IMPLEMENTATION IN JAVA

(a) A(P3) (b) A(P3) with z1 (or z3) shadowed

(c) A(P3) with z2 shadowed; several copies of the free group F2 in various sizes

(d) Z4; a convoluted mess (e) Z4 with two generators shadowed

(f) Z4 with one generator shadowed; several copies of Z3 in various sizes

Figure 4.1: A few examples of Cayley graphs of right-angled Artin groups.
Shadowed edges appear darker.

4.5. VISUALS 31

(a) The free abelian group Z3

(b) The RAAG A(P3)

(c) The free group F2

Figure 4.2: A few showcases of balls versus spheres.

Appendix A

Source Code

A.1 Global Variables

1 private Graph g;

2

3 private float zoom = -1000, r, s;

4 private PVector camPos;

5

6 // Non -final variables in all -caps can be modified with the

settings file and may thus not be be declared "final",

although they are to be treated as such

7 private boolean autoRotate = false;

8 private boolean showInterface = true;

9 private boolean showArrow = false;

10 private boolean holdingCtrl = false;

11 private boolean onlyDrawSphere = false;

12 private boolean stopThreads = false;

13 private boolean SAVE_WEIGHTS = false;

14

15 private final float SPAWN_SIZE = 1;

16 private final float SCALE = 200;

17 private int MAX_RADIUS = 5;

18 private final float PHYSICS_FRAMERATE_CAP = 100;

19 private float LAG_RELIEF = 0; // Probability that an

unrendered vertex doesn ’t get computed

20

21 private int drawRadius; // Radius of the ball around the

neutral element

22 private float physicsFramerate = 0;

23

24 // Initial slider values

25 private float R = .05;

26 private int orderAttract = 1;

27 private int orderRepel = -2;

32

A.2. THE SETUP METHOD 33

28 private float repulsionRadius = 1;

29 private float shadowEffect = .01;

30

31 private Slider selectedSlider;

32 private ArrayList <Slider > sliders;

33

34 private IntList shadow;

A.2 The setup Method

36 void setup () {

37 size (900, 600, P3D);

38 surface.setResizable(true);

39 frameRate (40);

40 textSize (12);

41 textAlign(LEFT , TOP);

42

43 camPos = new PVector ();

44

45 String fileName = "Graph.json";

46 try {

47 // Load settings from "settings.json"

48 JSONObject settings = loadJSONObject("settings.json");

49

50 fileName = settings.getString("filename");

51 MAX_RADIUS = settings.getInt("max_radius");

52 LAG_RELIEF = settings.getFloat("lag_relief");

53 SAVE_WEIGHTS = settings.getBoolean("save_weights");

54 } catch(Exception ex) {

55 // Save standard settings , defined above

56 println("WARNING: Could not read \" settings.json \".");

57 JSONObject settings = new JSONObject ();

58

59 settings.setString("filename", fileName);

60 settings.setInt("max_radius", MAX_RADIUS);

61 settings.setFloat("lag_relief", LAG_RELIEF);

62 settings.setBoolean("save_weights", SAVE_WEIGHTS);

63

64 saveJSONObject(settings , "settings.json");

65 }

66

67 drawRadius = MAX_RADIUS;

68

69 int size;

70 ArrayList <Edge > edges = new ArrayList <Edge >();

71

72 try {

73 // Load graph from file , "Graph.json" by default

34 APPENDIX A. SOURCE CODE

74 JSONObject jsonGraph = loadJSONObject(fileName);

75

76 size = jsonGraph.getInt("#generators");

77

78 JSONArray jsonEdges = jsonGraph.getJSONArray("edges");

79

80 for(int i = 0; i < jsonEdges.size(); i++) {

81 edges.add(new Edge(jsonEdges.getJSONObject(i).getInt("

from") - 1, jsonEdges.getJSONObject(i).getInt("to") - 1));

82 }

83 } catch(NullPointerException ex) {

84 // Resort to one vertex and no edges

85 println("WARNING: Could not read \"" + fileName + "\".");

86 size = 1;

87 }

88

89 // Algorithm for solving the word problem in RAAGs. Most of

the work is done in the "Piling" class

90 Algorithm raag = new Algorithm <Graph >(size , new Graph(size ,

edges)) {

91 protected boolean isTrivial(Word w) {

92 return new Piling(w, triv).isTrivial ();

93 }

94 };

95

96 g = raag.getGraph ();

97

98 // Sample algorithm for another class of groups: (Z/mZ)^n

with input (n, m)

99 // Remember to set the max. radius large enough (n*m/2) in

the settings file.

100 // Algorithm z_nm = new Algorithm <Integer >(2, 20) {

101 // protected boolean isTrivial(Word w) {

102 // int[] count = new int[nGens];

103

104 // for(int i : w) {

105 // if(i > 0) {

106 // count[i - 1]++;

107 // } else {

108 // count[-i - 1]--;

109 // }

110 // }

111

112 // for(int i : count) {

113 // if(i%triv != 0) {

114 // return false;

115 // }

116 // }

117

A.2. THE SETUP METHOD 35

118 // return true;

119 // }

120 //};

121

122 //g = z_nm.getGraph ();

123

124 // Slider initialization , nothing interesting

125 selectedSlider = null;

126 sliders = new ArrayList <Slider >();

127 sliders.add(new Slider(0, .5, false , "Step size") {

128 protected void init() {

129 setValue(R);

130 }

131

132 public void affect () {

133 R = value;

134 }

135 }

136);

137 sliders.add(new Slider(0, 4, true , "Attraction exponent") {

138 protected void init() {

139 setValue(orderAttract);

140 }

141

142 public void affect () {

143 orderAttract = int(value + .01);

144 }

145 }

146);

147 sliders.add(new Slider(-4, 0, true , "Repulsion exponent") {

148 protected void init() {

149 setValue(orderRepel);

150 }

151

152 public void affect () {

153 orderRepel = int(value + .01);

154 }

155 }

156);

157 sliders.add(new Slider(-5, 5, false , "log(Repulsion radius)

") {

158 protected void init() {

159 setValue(log(repulsionRadius));

160 }

161

162 public void affect () {

163 repulsionRadius = exp(value);

164 }

165 }

36 APPENDIX A. SOURCE CODE

166);

167 sliders.add(new Slider(0, .05, false , "Shadow effect") {

168 protected void init() {

169 setValue(shadowEffect);

170 }

171

172 public void affect () {

173 shadowEffect = value;

174 }

175 }

176);

177

178 shadow = new IntList ();

179

180 // Start the physics

181 new Thread () {

182 public void run() {

183 int m = millis ();

184

185 while (! stopThreads) {

186 while(millis () - m < 1000/ PHYSICS_FRAMERATE_CAP)

delay (1);

187 physicsFramerate = 1000./(millis () - m);

188 m = millis ();

189

190 g.adjustPos ();

191 }

192 }

193 }.start ();

194 }

A.3 The draw Method

196 void draw() {

197 if(mousePressed) {

198 if(selectedSlider == null) {

199 // Rotate the graph by dragging it around

200 r += .005 * (mouseX - pmouseX);

201 s -= .005 * (mouseY - pmouseY);

202 s = max(-PI/2, min(PI/2, s));

203 } else {

204 // Adjust a slider

205 float xAdj = min(max(mouseX - selectedSlider.pos.x, 0),

selectedSlider.w);

206 float v = map(xAdj , 0, selectedSlider.w, selectedSlider

.min , selectedSlider.max);

207

208 selectedSlider.setValue(v);

A.3. THE DRAW METHOD 37

209 }

210 }

211

212 if (autoRotate) {

213 r += .003;

214 }

215

216 background (#000000);

217

218 pushMatrix ();

219 translate(width/2, height/2, zoom);

220 rotateX(s);

221 rotateY(r);

222

223 translate(-camPos.x, -camPos.y, -camPos.z);

224

225 if(showArrow) {

226 fill(# BBBBBB);

227 drawArrow (0, 750, 0, 60, 20, 120);

228 }

229

230 ArrayList <Edge > edges = g.getEdges ();

231 for(Edge e : edges) {

232 Vertex from = g.vertices.get(e.from);

233 Vertex to = g.vertices.get(e.to);

234

235 if (onlyDrawSphere) {

236 if(to.dist != drawRadius) continue;

237 } else {

238 if(to.dist > drawRadius) continue;

239 }

240

241 if(onlyDrawSphere) {

242 stroke (#ffffff , 70);

243 } else if(shadow.hasValue(e.generator)) {

244 stroke (#ffffff , 80);

245 } else {

246 stroke (#ffffff , 200);

247 }

248

249 line(from.pos.x * SCALE , from.pos.y * SCALE , from.pos.z *

SCALE , to.pos.x * SCALE , to.pos.y * SCALE , to.pos.z *

SCALE);

250 }

251

252 if(onlyDrawSphere) {

253 ArrayList <Vertex > vertices = g.getVertices ();

254

255 noStroke ();

38 APPENDIX A. SOURCE CODE

256 fill(#ffffff , 200);

257 for(Vertex v : vertices) {

258 if(v.dist != drawRadius) continue;

259 pushMatrix ();

260 translate(v.pos.x * SCALE , v.pos.y * SCALE , v.pos.z *

SCALE);

261 sphere (4);

262 popMatrix ();

263 }

264 }

265 popMatrix ();

266

267 if(showInterface) {

268 textAlign(LEFT , TOP);

269 fill(# ffffff);

270 text("Framerate render/physics: " + int(frameRate) + ", "

+ int(physicsFramerate), 0, 0);

271 text("#vertices: " + g.vertices.size() + ", #edges: " +

edges.size(), 0, 15);

272 text("Radius: " + drawRadius , 0, 30);

273 text("Avg Speed: " + (int(g.avgSpeed * 100) / 100.), 0,

45);

274

275 if(shadow.size() > 0) {

276 String str = shadow.get (0) + "";

277

278 for(int i = 1; i < shadow.size(); i++) {

279 str += ", " + shadow.get(i);

280 }

281

282 text("Shadowed: " + str , 0, 60);

283 }

284

285

286 for(int i = 0; i < sliders.size(); i++) {

287 sliders.get(i).draw(width - sliders.get(i).w - 20, 10 +

30*i);

288 }

289 }

290 }

A.4 Event Methods

292 void mousePressed () {

293 if(mouseButton == LEFT) {

294 for(Slider s : sliders) {

295 if((s.pos.x <= mouseX && mouseX <= s.pos.x + s.w) && (s

.pos.y <= mouseY && mouseY <= s.pos.y + s.h)) {

A.4. EVENT METHODS 39

296 selectedSlider = s;

297 break;

298 }

299 }

300 }

301 }

302

303 void mouseReleased () {

304 selectedSlider = null;

305 }

306

307 void mouseWheel(MouseEvent evt) {

308 if(holdingCtrl) {

309 drawRadius = max(0, min(drawRadius - evt.getCount (),

MAX_RADIUS));

310 } else {

311 zoom -= 50 * evt.getCount ();

312 }

313 }

314

315 void keyPressed () {

316 if(key == ’r’ || key == ’R’) {

317 g.resetPosition ();

318 } else if(key == ’a’ || key == ’A’) {

319 autoRotate = !autoRotate;

320 } else if(key == ’s’ || key == ’s’) {

321 showArrow = !showArrow;

322 } else if(key == ’d’ || key == ’D’) {

323 onlyDrawSphere = !onlyDrawSphere;

324 } else if(key == ’p’ || key == ’P’) {

325 PrintWriter out = createWriter("edges.txt");

326 out.print(g.toString ());

327 out.flush();

328 out.close();

329 } else if(key >= 49 && key <= 57) {

330 // Number keys 1 - 9

331 int n = key - 48;

332

333 if (shadow.hasValue(n)) {

334 shadow.removeValue(n);

335 } else {

336 shadow.appendUnique(n);

337 shadow.sort();

338 }

339 } else if(keyCode == 17) {

340 // Control key

341 holdingCtrl = true;

342 } else if(keyCode == 97) {

343 // F1 key

40 APPENDIX A. SOURCE CODE

344 showInterface = !showInterface;

345 }

346 }

347

348 void keyReleased () {

349 if(keyCode == 17) {

350 holdingCtrl = false;

351 }

352 }

A.5 Additional Methods

354 void drawArrow(float x, float y, float z, float w, float h,

float l) {

355 beginShape ();

356 vertex(x - w/2, y, z);

357 vertex(x + w/2, y, z);

358 vertex(x, y, z + l);

359 endShape(CLOSE);

360 beginShape ();

361 vertex(x - w/2, y + h, z);

362 vertex(x + w/2, y + h, z);

363 vertex(x, y + h, z + l);

364 endShape(CLOSE);

365 beginShape ();

366 vertex(x - w/2, y, z);

367 vertex(x + w/2, y, z);

368 vertex(x + w/2, y + h, z);

369 vertex(x - w/2, y + h, z);

370 endShape(CLOSE);

371 beginShape ();

372 vertex(x - w/2, y, z);

373 vertex(x, y, z + l);

374 vertex(x, y + h, z + l);

375 vertex(x - w/2, y + h, z);

376 endShape(CLOSE);

377 beginShape ();

378 vertex(x + w/2, y, z);

379 vertex(x, y, z + l);

380 vertex(x, y + h, z + l);

381 vertex(x + w/2, y + h, z);

382 endShape(CLOSE);

383 }

384

385 void exit() {

386 stopThreads = true;

387

388 super.exit();

A.6. THE WORD CLASS 41

389 }

390

391 private int sgn(int n) {

392 if(n > 0) return 1;

393 else if(n < 0) return -1;

394

395 return 0;

396 }

A.6 The Word Class

1 private class Word extends ArrayList <Integer > {

2 public Word multLeft(int i) {

3 if(i == 0) throw new ArithmeticException("generator count

starts at 1, instead 0 given");

4

5 Word out = this.copy();

6

7 if(out.size() > 0 && out.get (0) == -i) {

8 out.remove (0);

9 } else {

10 out.add(0, i);

11 }

12

13 return out;

14 }

15

16 public Word multLeft(Word w) {

17 Word out = this.copy();

18 for(int i = w.size() - 1; i >= 0; i--) {

19 out = out.multLeft(w.get(i));

20 }

21

22 return out;

23 }

24

25 public Word multRight(int i) {

26 if(i == 0) throw new ArithmeticException("generator count

starts at 1, instead 0 given");

27

28 Word out = this.copy();

29

30 int s = out.size();

31 if(s > 0 && out.getLastLetter () == -i) {

32 out.remove(s - 1);

33 } else {

34 out.add(s, i);

35 }

42 APPENDIX A. SOURCE CODE

36

37 return out;

38 }

39

40 public Word multRight(Word w) {

41 Word out = this.copy();

42 for(int v : w) {

43 out = out.multRight(v);

44 }

45

46 return out;

47 }

48

49 public Word copy() {

50 return (Word)super.clone();

51 }

52

53 public int getLastLetter () {

54 if(this.size() == 0) return 0;

55 return this.get(this.size() - 1);

56 }

57

58 public Word invert () {

59 Word out = new Word();

60

61 for(int v : this) {

62 out = out.multLeft(-v);

63 }

64

65 return out;

66 }

67

68 public String toString () {

69 if(this.size() == 0) return "e";

70

71 String out = "";

72

73 for(int i : this) {

74 if(i > 0) {

75 out += (char)(i + 96);

76 } else {

77 out += "(" + (char)(-i + 96) + "^-1)";

78 }

79 }

80

81 return out;

82 }

83 }

A.7. THE PILING CLASS 43

A.7 The Piling Class

1 private class Piling {

2 public final Word[] p;

3

4 public Piling(Word w, Graph g) {

5 int size = g.vertices.size();

6 p = new Word[size];

7

8 for(int i = 0; i < size; i++) {

9 p[i] = new Word();

10 }

11

12 try {

13 for(int i = 0; i < w.size(); i++) {

14 int z = w.get(i);

15 int a = abs(z);

16

17 if(a <= 0 || a > size) {

18 throw new ArithmeticException ();

19 }

20

21 boolean cancel = (p[a - 1]. size() > 0 && p[a - 1].

getLastLetter () == -sgn(z));

22

23 for(int k = 0; k < size; k++) {

24 if(k == a - 1) {

25

26 p[k] = p[k]. multRight(sgn(z));

27

28 } else if(!g.hasEdge(k, a - 1)) {

29

30 p[k] = p[k]. multRight (2 * (cancel ? -1 : 1));

31

32 }

33 }

34 }

35 } catch(ArithmeticException ex) {

36 println("WARNING: invalid word given");

37 }

38 }

39

40 public boolean isTrivial () {

41 for(int i = 0; i < p.length; i++) {

42 if(p[i].size() > 0) {

43 return false;

44 }

45 }

46

44 APPENDIX A. SOURCE CODE

47 return true;

48 }

49 }

A.8 The Vertex Class

1 private class Vertex {

2 public PVector pos; // position coordinates (for

rendering)

3 public final Word word; // the word this vertex represents

("null" if not applicable)

4 public final int dist; // distance to the neutral element

("-1" if not applicable)

5

6 public Vertex(Word w, int d) {

7 this(0, 0, 0, w, d);

8 }

9

10 public Vertex(float x, float y, float z, Word w, int d) {

11 pos = new PVector(x, y, z);

12 word = w;

13 dist = d;

14 }

15 }

A.9 The Edge Class

1 private static class Edge {

2 public final int from , to , generator;

3

4 public Edge(int cFrom , int cTo) {

5 this(cFrom , cTo , 0);

6 }

7

8 public Edge(int cFrom , int cTo , int cGenerator) {

9 // Mathematically , the order of "from" and "to" does not

matter , so from a code standpoint , it is better to always

store them so that "to" is larger than or equal to "from".

For instance , the method below is a bit shorter because

of this.

10 if(cFrom <= cTo) {

11 from = cFrom;

12 to = cTo;

13 } else {

14 from = cTo;

15 to = cFrom;

16 }

17

A.10. THE GRAPH CLASS 45

18 generator = cGenerator;

19 }

20

21 // This method helps keep some code in the "Graph" class a

bit cleaner.

22 public static boolean isValidEdge(int mFrom , int mTo , int

upperLimit) {

23 return 0 <= mFrom && mFrom <= mTo && mTo < upperLimit;

24 }

25 }

A.10 The Graph Class

1 private class Graph {

2 public final ArrayList <ArrayList <Edge >> edges;

3 public final ArrayList <Vertex > vertices;

4 public float avgSpeed = 0; // Information for rendering

5

6 public Graph(int cSize , ArrayList <Edge > cEdges) {

7 vertices = new ArrayList <Vertex >();

8

9 edges = new ArrayList <ArrayList <Edge >>();

10

11 for(int i = 0; i < cSize; i++) {

12 vertices.add(new Vertex(null , -1));

13

14 edges.add(new ArrayList <Edge >());

15 }

16

17 if(cEdges != null) {

18 for(Edge e : cEdges) {

19 addEdge(e);

20 }

21 }

22 }

23

24 public boolean hasEdge(Edge e) {

25 return hasEdge(e.from , e.to);

26 }

27

28 public boolean hasEdge(int v, int w) {

29 return getEdge(v, w) != null;

30 }

31

32 public Edge getEdge(int v, int w) {

33 if(v > w) return getEdge(w, v);

34 if(!Edge.isValidEdge(v, w, edges.size())) return null;

35

46 APPENDIX A. SOURCE CODE

36 ArrayList <Edge > copy = (ArrayList <Edge >) edges.get(v).

clone();

37 for(Edge e : copy) {

38 try {

39 if(w == e.to) return e;

40 } catch(NullPointerException ex) {

41 // Because the Cayley graph is generated in a thread ,

it sometimes happens that

42 // "e.to" throws an exception here. This is nothing

to worry about.

43 }

44 }

45

46 return null;

47 }

48

49 public ArrayList <Vertex > getVertices () {

50 return (ArrayList <Vertex >) vertices.clone();

51 }

52

53 public ArrayList <Edge > getEdges () {

54 ArrayList <Edge > out = new ArrayList <Edge >();

55

56 for(int i = 0; i < edges.size(); i++) {

57 ArrayList <Edge > al = edges.get(i);

58

59 for(int k = 0; k < al.size(); k++) {

60 out.add(al.get(k));

61 }

62 }

63

64 return out;

65 }

66

67 public void addVertex(Vertex v) {

68 vertices.add(v);

69

70 edges.add(new ArrayList <Edge >());

71 }

72

73 public void addEdge(int v, int w, int label) {

74 addEdge(new Edge(v, w, label));

75 }

76

77 public void addEdge(Edge e) {

78 if(this.hasEdge(e)) return;

79

80 if(!Edge.isValidEdge(e.from , e.to , edges.size())) {

81 println("WARNING: invalid edge given");

A.10. THE GRAPH CLASS 47

82

83 return;

84 }

85

86 edges.get(e.from).add(e);

87 }

88

89 public void resetPosition () {

90 for(Vertex v : vertices) {

91 v.pos = new PVector(random(-SPAWN_SIZE , SPAWN_SIZE),

92 random(-SPAWN_SIZE , SPAWN_SIZE),

93 random(-SPAWN_SIZE , SPAWN_SIZE));

94 }

95 }

96

97 public void adjustPos () {

98 if(R < EPSILON) return;

99

100 int size = vertices.size();

101 PVector [] velocity = new PVector[size];

102

103 for(int i = 0; i < size; i++) {

104 velocity[i] = new PVector(0, 0, 0);

105

106 if(vertices.get(i).dist > drawRadius && random (1) <

LAG_RELIEF) continue;

107

108 for(int k = 0; k < i; k++) {

109 if(vertices.get(k).dist > drawRadius && random (1) <

LAG_RELIEF) continue;

110

111 Vertex v1 = vertices.get(i);

112 Vertex v2 = vertices.get(k);

113

114 PVector f = PVector.sub(v2.pos , v1.pos);

115 float m = f.mag();

116

117 float r;

118 Edge e = getEdge(k, i);

119 if(e != null) {

120 r = -pow(m, orderAttract);

121

122 if(shadow.hasValue(e.generator)) r *= shadowEffect;

123 } else if(m >= repulsionRadius) {

124 continue;

125 } else {

126 r = 0.002 * pow(m, orderRepel);

127 }

128

48 APPENDIX A. SOURCE CODE

129 f.setMag(min(r*R, .6));

130

131 velocity[k] = PVector.add(velocity[k], f);

132 velocity[i] = PVector.sub(velocity[i], f);

133 }

134 }

135

136 PVector newCamPos = new PVector(0, 0, 0);

137 float newAvgSpeed = 0;

138

139 for(int i = 0; i < size; i++) {

140 vertices.get(i).pos.add(velocity[i]);

141

142 newCamPos.add(vertices.get(i).pos);

143 newAvgSpeed += velocity[i].mag();

144 }

145

146 newCamPos.mult(SCALE/size);

147 newAvgSpeed *= SCALE/size;

148

149 camPos = newCamPos;

150 avgSpeed = newAvgSpeed;

151 }

152

153 public String toString () {

154 String out = "";

155

156 for(Edge e : this.getEdges ()) {

157 out += e.from + " " + e.to + (SAVE_WEIGHTS ? " " +

PVector.sub(vertices.get(e.from).pos , vertices.get(e.to).

pos).mag() : "") + "\n";

158 }

159

160 out = out.substring(0, out.length () - 1);

161

162 return out;

163 }

164 }

A.11 The Algorithm Class

1 private abstract class Algorithm <T> extends Thread {

2 private final Graph g;

3 protected final int nGens;

4 protected final T triv;

5

6 public Algorithm(int n, T cTriv) {

7 g = new Graph(0, null);

A.11. THE ALGORITHM CLASS 49

8 nGens = n;

9 triv = cTriv;

10

11 this.start();

12 }

13

14 public Graph getGraph () {

15 return g;

16 }

17

18 public void run() {

19 g.addVertex(new Vertex(new Word(), 0));

20

21 for(int i = 0; i < g.vertices.size(); i++) {

22 Vertex v = g.vertices.get(i);

23

24 if(v.dist >= MAX_RADIUS) break;

25

26 for(int z = -nGens; z <= nGens; z++) {

27 if(z == 0) continue;

28

29 Word next = v.word.multRight(z);

30

31 int connected = -1;

32 for(int k = 0; k < g.vertices.size(); k++) {

33 if(this.isTrivial(next.multRight(g.vertices.get(k).

word.invert ()))) {

34 connected = k;

35 break;

36 }

37 }

38

39 if(connected == -1) {

40 // New element

41 g.addVertex(new Vertex(random(-SPAWN_SIZE ,

SPAWN_SIZE),

42 random(-SPAWN_SIZE ,

SPAWN_SIZE),

43 random(-SPAWN_SIZE ,

SPAWN_SIZE), next , v.dist + 1));

44

45 g.addEdge(i, g.vertices.size() - 1, abs(z));

46 } else {

47 // New edge to old element

48 g.addEdge(i, connected , abs(z));

49 }

50 }

51 }

52 }

50 APPENDIX A. SOURCE CODE

53

54 protected abstract boolean isTrivial(Word w);

55 }

A.12 The Slider Class

1 private abstract class Slider {

2 public PVector pos;

3 public final float w, h;

4 public final float min , max;

5 public final boolean discrete;

6 public final String name;

7 public float value;

8

9 public Slider(float cMin , float cMax , boolean cDiscrete ,

String cName) {

10 w = 200;

11 h = 10;

12

13 min = cMin;

14 max = cMax;

15 discrete = cDiscrete;

16 name = cName;

17

18 value = 0;

19 init();

20 }

21

22 public void draw(float x, float y) {

23 pos = new PVector(x, y);

24

25 fill(# A5A5A5);

26 stroke (# ffffff);

27 rect(x, y, w, h);

28 fill(# E0E0E0);

29 ellipse(x + map(value , min , max , 0, w), y + h/2, 1.5 * h,

1.5 * h);

30

31 textAlign(RIGHT , TOP);

32 text(name + ": " + int(value * 100) * 1./100 , x - 8, y -

3);

33 }

34

35 public void setValue(float v) {

36 if(discrete) {

37 value = floor(v + .5);

38 } else {

39 value = v;

A.12. THE SLIDER CLASS 51

40 }

41 affect ();

42 }

43

44 protected abstract void init();

45

46 public abstract void affect ();

47 }

Bibliography

[1] J. Crisp, E. Godelle, and B. Wiest, “The conjugacy problem in subgroups
of right-angled artin groups,” Journal of Topology, vol. 2, no. 3, pp. 442–
460, 2009.

[2] M. Clay and D. Margalit, Office Hours with a Geometric Group Theorist.
Kassel: Princeton University Press, 2017.

[3] C. Löh, Geometric Group Theory - An Introduction. Berlin, Heidelberg:
Springer, 2017.

[4] F. Harary, Graph Theory. New York: Avalon Publishing, 1969.

[5] https://processing.org.

52

